Inteligencia Artificial (IA), Machine Learning (ML) y Deep Learning (DL) - Modalidad Online

Inteligencia Artificial (IA), Machine Learning (ML) y Deep Learning (DL)
Materiales incluidos:
SCORM 1
Referencia del pack formativo
Referencia 260783-1901
Duración del pack formativo
Horas 150 h
Área de formación - Programación
Área de formación Informática, Diseño y Programación
Tipo de modalidad del pack formativo
Modalidad Online
Precio del pack formativo
Precio No disponible
[Precio visible sólo para usuarios registrados]

UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL

  1. Introducción a la inteligencia artificial
  2. Historia
  3. La importancia de la IA

UNIDAD DIDÁCTICA 2. TIPOS DE INTELIGENCIA ARTIFICIAL

  1. Tipos de inteligencia artificial

UNIDAD DIDÁCTICA 3. ALGORITMOS APLICADOS A LA INTELIGENCIA ARTIFICIAL

  1. Algoritmos aplicados a la inteligencia artificial

UNIDAD DIDÁCTICA 4. RELACIÓN ENTRE INTELIGENCIA ARTIFICIAL Y BIG DATA

  1. Relación entre inteligencia artificial y big data
  2. IA y Big Data combinados
  3. El papel del Big Data en IA
  4. Tecnologías de IA que se están utilizando con Big Data

UNIDAD DIDÁCTICA 5. SISTEMAS EXPERTOS

  1. Sistemas expertos
  2. Estructura de un sistema experto
  3. Fases de construcción de un sistema
  4. Rendimiento y mejoras
  5. Dominios de aplicación
  6. Creación de un sistema experto en C#
  7. Añadir incertidumbre y probabilidades

UNIDAD DIDÁCTICA 6. FUTURO DE LA INTELIGENCIA ARTIFICIAL

  1. Futuro de la inteligencia artificial
  2. Impacto de la IA en la industria
  3. El impacto económico y social global de la IA y su futuro

UNIDAD DIDÁCTICA 7. INTRODUCCIÓN AL MACHINE LEARNING

  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático

UNIDAD DIDÁCTICA 8. EXTRACCIÓN DE ESTRUCTURA DE LOS DATOS: CLUSTERING

  1. Introducción
  2. Algoritmos

UNIDAD DIDÁCTICA 9. SISTEMAS DE RECOMENDACIÓN

  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos

UNIDAD DIDÁCTICA 10. CLASIFICACIÓN

  1. Clasificadores
  2. Algoritmos

UNIDAD DIDÁCTICA 11. REDES NEURONALES Y DEEP LEARNING

  1. Componentes
  2. Aprendizaje

UNIDAD DIDÁCTICA 12. SISTEMAS DE ELECCIÓN

  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación

UNIDAD DIDÁCTICA 13. DEEP LEARNING CON PYTHON, KERAS Y TENSORFLOW

  1. Aprendizaje profundo
  2. Entorno de Deep Learning con Python
  3. Aprendizaje automático y profundo

UNIDAD DIDÁCTICA 14. SISTEMAS NEURONALES

  1. Redes neuronales
  2. Redes profundas y redes poco profundas

UNIDAD DIDÁCTICA 15. REDES DE UNA SOLA CAPA

  1. Perceptrón de una capa y multicapa
  2. Ejemplo de perceptrón

UNIDAD DIDÁCTICA 16. REDES MULTICAPA

  1. Tipos de redes profundas

UNIDAD DIDÁCTICA 17. ESTRATEGIAS DE APRENDIZAJE

  1. Entrada y salida de datos
  2. Entrenar una red neuronal
  3. Gráficos computacionales
  4. Implementación de una red profunda
  5. El algoritmo de propagación directa
  6. Redes neuronales profundas multicapa